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Three-dimensional wave packet calculations for total angular momentum quantum nlumlfehave been
performed in Jacobi coordinates. To be able to use the split operator propagator together with the fast Fourier
transform method, the wave function is transformed and a modified Hamiltonian obtained. The filter
diagonalization method has been used to determine a few rovibrational eigenstates gd thmldcule on

the lowest potential energy surface. Good agreement with previous work is obtained.

1. Introduction convergence of the calculations significantly. Therefore, other
curvilinear coordinate systems, such as Radau or Jacobi
coordinates, could be more efficient in this case.

To be able to use the split operator method together with

The time-dependent Schdimger equation (we use atomic
units throughout)

9 N FFT in curvilinear coordinates, the Hamiltonian must obey
FP(R, ) =HR H¥(R,Y @) certain requirements.These are fulfilled for the modified
version of Johnson’s hyperspherical coordinates but do not hold
together with the initial condition in general. Therefore, the question of the applicability of the
method to other curvilinear coordinate systems arises. In the
YR, t=0)=Y,(R) (2) present study we show that for triatomic systems the split

operator method together with FFT can be applied using the
whereR describes all spatial coordinates, provides a physically Jacobi coordinate system for problems with nonzero total
clear picture of a system’s evolution in time and allows us to angular momentum if a transformation of the Hamiltonian is
connect experimental properties, such as absorptiod Ra- made.
mar?-3 spectra, with details in the dynamical process. The time-  Inclusion of nonzero total angular momentum complicates
dependent approach is the natural choice when dealing withthe calculations considerably. This inclusion may, however, be
time-dependent potentials, as in the case of interaction with anecessary for accurate calculations, for example, when studying
laser field. photoexcitation where th&= 0 — J' = 0 transition usually is

At present, several methods of propagating the solution to not allowed.

the time-dependent Schdimger equation, such as the split
operator method, the Lanczos algorithm, and the Chebyshev2. Jacobi Coordinate System
polynomial expansion technique, are knotwDifferent coor- . . . .
dinate systems, such as Cartesian, Jacobi, hypersphericél, etc., The set of ‘]aCOt_" coordlnates_for a triatomic mole_cule ABC
are used, as there is no ideal coordinate system for every'S 9iven by three internal coordinaté r, 6, wherer is the

molecule or task and the optimal system should be chosen fordistance between B and Q,is the distance from the BC mass
the problem at hand. center to the A atom, anfllis the angle betweeR andr. Three

In our previous work?® the split operator method has been Euler a}nglesa, B.y desc_ribe rotations of the moIecuI«_e. We
applied to study 3D quantum dynamics of nonlinear triatomic can write the wave function as a sum of products of internal
molecules for total angular momentum quantum nundber0 functions and angular momentum eigenfunctions
using a modified version of Johnson’s hyperspherical coordinate
system. Advantages of the split operator method are its YR 00,87 1H)=

simplicity and the possibility to use it with time-dependent k=J 21+1
Hamiltonians. It exploits the speed of the fast Fourier transform z PR T, 0,1) —Di(a: B,7) (3)
(FFT), scaling as favorably &éIn N with increasing grid size K== 87°

N

Unfortunately, the modified version of Johnson’s hyper-
spherical coordinates has singularities at certain T-shaped
configurations which may cause numerical problems for some
molecules. For example, the,® ground-state wave function
is nonzero close to singular geometries. This slows down the

where DJK are eigenfunctions of the total angular momentum

operatord, andk is a quantum number corresponding to the

projection of the total angular momentum on #exis. Inserting

the wave function, eq 3, into the Scllinger equation, eq 1,

multiplying by (D«?)*, and integrating over the Euler angles,
T This paper was originally submitted for the Aron Kuppermann issue one can verify th.at the O”gmal problem I.S redu.ced for every
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An effective Hamiltonian operator for a system with is
axis parallel toR is given by

g o1& 18
Kk 2u R 2u' r?
A, )L d g K,
2\uR?  wr?l \sino a0 0 sir2o
ZMLRZ[J(J +1)— 2K + V(R 1, 6, 1) (4)
Fiejeer = ﬁ[@ +k+1)@F k)]”zl(k:t 1)% 4 a%]
5)

whereu is the reduced mass of the/BC system ang' is the
reduced mass of the BC fragmeM(R, r, 6, t) is a potential
energy term that includes any external fields which may be time
dependent. The volume element for this Hamiltonian is given
by sin 6dR dr d6.

In order not to mix local and nonlocal operators of the same
coordinate (e.g., sil anda/0),” a transformation of the wave
functionyx = ¢ sin"¥2 0 is made. This allows the use of the
split operator propagator together with FFT. The new Hamil-

tonian is given by
1 1 ad
—+—=]||l=+
e el

[J0+1)— 2] + V(R T, 6,1) (6)
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with the volume elementRidr dé.
The Hamiltonian can be simplified for the special cdse
0:
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2ugrRp 2 r?
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There are singularities @& = 0 and® = x. Therefore, one
must be careful when using this Hamiltonian for cases where
collinear geometries occur.

3. Propagation

Barinovs et al.

6 and 7 and correspondingly fdi and T,. The operatorJ
collects all terms that do not contain any derivative.

For each kinetic energy operatdi, T;, Ty, its derivatives
are found using one-dimensional FFT, keeping the other two
coordinates fixed. The operatordr and T, are diagonal, but
for J > 0 operatord) and T, are not diagonal itk. Differentk
components of th&J(R, r, 6, t) operator are coupled by the
Hy k1 terms of the Hamiltonian as seen in eq 7. Therefore, the
U(R, r, 0, t) operator must be diagonalized at e&hr, and6
grid point. Ty is diagonalized in the Fourier space (see Appendix
A). The diagonalizations are performed before the propagation
in time begins. The results are stored, which does not require
much memory but reduces the computational effort.

All matrices to be diagonalized are tridiagonal of order
(23 + 1) x (23 + 1). For large values of the total angular
momentum, it may be worthwhile to separate the matrix into
two smaller matrices using initial wave functions of odd and
even paritied! In this case the matrices will have orders
J+1) x (J+ 1) andJd x J, depending on the parity.

An attractive feature of the split operator method is that it is
simple and it has been used successfully together with time-
dependent external fields. However, it should be pointed out
that in comparing it to the Chebyshev and Lanczos methéds,
the necessity to diagonalize a nondiagonal Hamiltonian matrix
is specific to the split operator method. This is due to the fact
that in the split operator method we evaluate the exponent of
the Hamiltonian matrix, whereas in the Chebyshev and Lanczos
methods the nondiagonal Hamiltonian matrix acts directly on a
wave function.

The split operator method has also been used by J. Z. H.
Zhang and co-workers fal > 0 calculations, see for instance
ref 13. In their approach, the total wave function is expanded
in a basis of vibrational eigenfunctions for theoordinate and
angular momentum eigenfunctions for angular coordinates. Due
to construction, this methdgishould be effective when applied
to problems that can be well described by vibrational basis
functions for ther coordinate. Fourier functions, on the other
hand, are eigenfunctions of the kinetic energy operator and are
therefore expected to describe free particle motion and dis-
sociating coordinates well.

The operatoffy is often handled by a Gaussegendre DVR.

In this case, thd@, operator becomes nondiagonal in the angle

6 through the DVR basis set, whereby it acquires an extra
dimension. Propagation thereby becomes very expensive, see
ref 12. The problem of diagonalization éhdoes not arise using
FFT, asTy remains diagonal in this coordinate in the Fourier
basis set.

4. Calculations of HO Eigenstates

Time-dependent methods can be used to find eigenvalues and

Because of the nonlocal character of quantum mechanics, thegjgenfunctions of the stationary ScHinger equation? Since

wave function is in principle required at every point in space.
In practice this is not required, as in most numerical imple-

eigenvalue problems of small polyatomic molecules are studied
by many researchers and many results are available, we have

mentations the wave paCket is discretized and propagated on %hosen to test our propaga“on method by f|nd|ng e|genvalues

grid. A

To evaluate the action of the time evolution operdtér
(the exponential of the Hamiltonian operator) o, the split
operator method is used?

U (R 1,6, At) = efiAt['T’R+'T',+T9+U(R,r,0,t)] —
e—iAﬁ,/ze—iAﬁRlz
9)

whereTr is made up of terms containirig derivatives in eqs

e—iAﬁRlze—iAt?,/ze—imn/ze—iAtU(R,r,e,t) e—iAﬁ'H/Z

for a previously well-studied system.

The procedure developed above is applied to th® H
molecule in the ground state using an empirical PES constructed
by Jensenr? Eigenstates fod = 0, 1, 2 are calculated using the
filter diagonalization methddin order to separate closely lying
eigenstates. Far= 2, each vibrational level has rotational states
with an energy separatioAE of only 1.1 cntl. It can be
estimated from the timeenergy uncertainty principle (more
precisely, from the Fourier integral theorem or the sampling
theorem)T = z/AE,Y7 that using spectral methods the total
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propagation timeT must be larger than 15 ps. The filter TABLE 1: Calculated Vibrational Energies (J = 0) of the
diagonalization method has been devised to overcome theH20 Molecule in the Ground Electronic State (denoted FD)

uncertainty principl&® and our hope was that it would allow us (v1,v2,v3) FD DVR CFQMC
to redu_ce th!s long propagation tim_e. _ o 010 15943 15943 1594.4
To find eigenstates using the filter diagonalization (FD) 020 3152.0 3152.0 3151.4
method a small set of basis functions is first obtained. This can 100 3657.1 3656.5 3657.8
be done by propagating an arbitrary wave packet on the potential 001 3755.5 3756.0 3756.6
energy surface. a Reference energies are taken from Fernley 8@VR) and Acioli
Functions et al?® (CFQMC). All energies are given in crhrelative to the (0, 0,
0) state.
ol Et
| (E) = f_mg(t) eTw(D) dt (10) TABLE 2: Calculated Rovibrational Energies (J = 1) of the
H,0O Molecule in the Ground Electronic State (denoted FD)
whereg(t) is a filtering function, can be calculated at different (vvas) I =0 =1
. . . . 1,V2,V3
energies; and used as a basis set for the expansion of the trial
wave function. By construction, the function®(E) are 000 D 23.80 37.08 42.32
L . ) . DVR 23.80 37.08 42.33
optimized to find eigenstates whose energies are clogg to CFQMC 2295 36.04 41.61
In constructing the Hamiltonia], and overlaps, matrices 010 ED 23.82 40.17 45.72
over |®(E)), two time integrals result from eq 10. Using a DVR 23.82 40.18 45.72
Gaussian damping functidf,a step function, or cosine based CFQMC 22.78 41.24 44.86
functiong8in eq 10 allows the Hamiltonian and overlap matrices 020 g\?R 22338822 Z‘f%’ 5582223
to be constructed knowing only the correlation function: CFOMC 22 52 4708 50 24
i~ 100 FD 23.43 36.24 41.45
C(H) = (¥(0)l & "W(0)) = (P(O)W()  (11) DVR 23.43 36.24 41.45
CFQMC 23.42 35.97 42.05
where W(0)|W(t)) = (W*(0)|W(t)I This is made possible by 001 FD 23.60 35.80 41.09
calculating one of the two time integrals in tHeandS matrices DVR 23.60 35.80 41.09
analytically. We have tried all three damping functions men- CFQMC 23.64 39.31 42.64

tioned above. The cosine-based and the Gaussian damping aReference energies are taken from Fernley et al. (B%4Rd Acioli
functions give similar convergence of the results, the former et al. (CFQMC)? All energies are relative to thé= 0 state.
being slightly better, in agreement with ref 16. The cosine based

filtering function® which is used for the present work, is TABLE 3: Calculated Rovibrational Energies (J = 2) of the

H,O Molecule in the Ground Electronic State (FD}

at 2,2 (v1,v2,v3) T=—2 1=-— t=0 =1 71=2

t) = cog—=|O(1 — tI/T 12
%) S(ZT) ( ) (12) 000 FD 70.11  79.45 95.16 134.70 135.97
DVR 70.11 79.45 95.17 134.70 135.98
whereT is the total propagation time ar@(1 — t3/T?) is the CFQMC 71.40 79.45 9951 13581 137.13
Heaviside step function. The Hamiltonian matrix elementsand 010  FD 70.23 8227  98.88 147.38 148.57
the overlap matrix elements are given in Appendix B. g\F/SMC 7732132 8831-% 1%%%% 114;5%3592 1145815577
In order npt to have to store the initial wave function, eq 11 020 FD 70.36 86.24 103.68 16424 16531
can be rewritten &8 DVR 70.36 86.23 103.69 164.25 165.32
" " CFQMC 7252 89.68 99.82 170.16 175.84
C@t) = (e ""?w(0) e M?W(0)) = (W(12) (13) 100 FD 68.97 77.89 9350 131.63 132.92
DVR 68.97 77.89 93.50 131.63 132.92
The Hamiltonian and overlap matrices give the generalized 001 %EQMC ég-gg 397’;‘31) 183-22 gg-gg igig?

igenval ion : : : : :

eigenvalue equatio DVR 69.39 77.73 93.58 129.89 131.27
HB = SBE (14) CFQMC 71.86 78.48  98.74 133.46 137.94

aReference energies are taken from Fernley et al. (B¥4r)d Acioli

Solving eq 14, eigenvalues and eigenstates can be found inet al. (CFQMCY° All energies are relative to thé = 0 state.
selected energy ranges provided that these eigenstates are
contained in the wave packet. used in those studies was used in the present study. As,tbe H

In our calculations, we have used 32 grid points for every molecule is an asymmetric rotok, is not a good quantum
coordinate and a time steft = 0.05 fs. Separate calculations number and eigenenergies corresponding to some particular
for eachJ have been performed. An arbitrary, but smooth, initial value ofJ are numbered by rather than by. Our calculated
wave packet with no symmetry restrictions has been chosen inzero point energy is 4630.4 crh Acioli et al2° found it to be
order to obtain all relevant eigenstates from one run. The 4628.2 cml.
rotational eigenenergies have been converged to 0.008 cm From the tables, we see that the agreement with the results
accuracy. This corresponds to a relative error smaller thah 10  of Fernley et al. is very good, whereas the agreement with the
The required number of propagation steps to converge all results of Acioli et al. is poorer. There is, however, a discrepancy

rotational eigenstates o = 1500,N; = 30 000, andN; = of about 0.5 cm! between our energy values and those of
50 000 ford = 0,J = 1, andJ = 2, respectively. Fernley et al. for the (1,0,0) and (0,015 O vibrational levels,

In Tables 13, the eigenenergies obtained are compared with see Table 1. The origin of this disagreement is not clear.
eigenenergies found in the theoretical study by Fernley ¥t al. To resolve thel = 2 rovibrational states, the required total

using the variational method. Results from the recent study of propagation time is 2.5 ps. Thus, there is some gain compared
Acioli et al.2® using the correlation function quantum Monte to the 15 ps propagation time, which is dictated by the time
Carlo (CFQMC) method are also included. The same potential energy uncertainty principle, though the improvement is not very
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large. The gain is even smaller for the= 0 andJ = 1 states. 92 9

One possible explanation for the slow convergence of the filter R )= LR,
diagonalization method that we find for this problem could be ex 96 5 | =
the specific structure of the rovibrational spectrum, where _fz(R)i f,(R, r)a_
rotational energy levels are grouped in dense packs for each 06 36°

vibrational level. We note that in a recent paper Vijay and Wyatt _
find that the FD method does not always bypass the time FT(p,.0) lex —f(R)p; —if(R 1), ET(0.p,). (16)
energy uncertainty constraifit,Certainly, one must conclude Po: if(RNpy,  —f(R, r)pg + Po):
that for the particular problem treated here, the use of basis set

methods or iterative approaches, for instance employing the
Lanczos algorithm, would be computationally less expensive

for finding the eigenvalues, see ref 22 for a discussion.

where FT(py, 0)71 is the inverse Fourier transform, which is
defined as

—~ _ 1 000
5. Concluding Remark W(0) = FT(py, 0) ' ®(p,) = —[@(p,) €*’dp,  (17)
onciuding Remarks 0 (7) \/Z_nf 0. 0

A wave packet representing a rotating triatomic molecule is
propagated in Jacobi coordinates for total angular momentumif the forward Fourier transform is defined as
guantum numbel equal to 0,1,2. The propagation is performed
using the split operator method combined with the fast Fourier ~ 1 i
trangform tpechnF:que, which is made possible by a simple P(py) = FT(0, p)¥(6) :Eflp(@) e ™ dp, (18)
transformation of the molecular Hamiltonian. We test this
propagation method by calculating rovibrational eigenstates of
the HLO molecule, which are found to be in good agreement
with those found by Fernley et al. using the discrete variable
representation approaéh. . 1A
The nonzero total angular momentum calculations could be Ty(py) = U "DyU (19)
of interest to photoexcitation processes. As a short-time .
propagator is used in this work, the method can be applied to whereDy is a diagonal matrix ant) is unitary, whereby
studies of triatomic molecules interacting with femtosecond laser
fields. However, application of the method to transitions other exp(itT,) = U exp(itD ,)U (20)
thanJ = 0— J = 1 may be difficult, due to problems of finding
an initial wave function (differend andk states may contribute
to the initial wave function). Another problem for application
to transitions involving large values of could be that the - T .
computer memory required increases with the total angular Summarizing, the action of, for J > 0 cases is evaluated
momentum. Therefore, some approximations, such as restrictionin three steps. First, the 1D Fourier transform of the wave
of the initial state to certaid and k (or 7) values, may be  function is performed. Second, the exponential of the operator
necessary in such a case. To(ps), €q 20, is applied. Th&, operator can be split into a
commuting diagonal part and a noncommuting nondiagonal part.
Acknowledgment. This project has been supported by the The required diagonalization of the nondiagonal part is then
Swedish Natural Science Research Council (NFR), the Swedishdone at eack andpy. Third, the 1D inverse Fourier transform
Council for Planning and Coordination of Research (FRN), and ©f the wave function is found.
the Wallenberg Foundation.

The kinetic energy operatdry(ps), defined by eqs 4 and 5, is
diagonalized in Fourier space

can be used to propagate the wave packet. Generalization to
cases of larger values dfis straightforward.

Appendix B

A dix A . . _
ppendix The overlap matrix element§ for the cosine filtering

To illustrate the evaluation of the action of the exponential function are given by
of the kinetic energy operatdiy on ¢, we consider the simple
caselJ = 1/2. Thenk can take two values, which we denote by _1 7t _
subscripts and write S = 4f,T’200{T) sin((T — [t)AE)/AE +

sin((@/T + AE)(T — [t)/(z/T + AE) + sin((—x/T + AE)

(T — [t))(—T + AE)] x C(t) expli(E, + E)U2] dt (21)

exp —iAt
, ) whereAE = (E, — Ey)/2. This expression is analogous to the
_ % Q%ﬁ+i2) K LRZ[(J + Kyt 1A~ k,m)]“% one derived by M. H. Beck et al. in ref 16, where details of the
R pwr] 96 2u ) derivation can be found.
L Okt DA k2L (L 1) . _— . .
2uRe vz V0 2R i) ae? To find the Hamiltonian matrix elementsy, the following

relationship® has been used:

9 3

LR LR

= ex W (15) W (0) F Wt =(‘P0‘ig‘ll’t) 22
s o worw =[voidvo) @

The following property is used giving



3D Wave Packet Propagation

Hy= — | T—Esin(lt)sin((r—quE)/AEJr

S22 7T
cos(”?t) sin((T — |t)AE)/AE + % sin((/T + AE)

(T — [t))/(/T + AE) + % sin((/T + AE)(T — [t)))/

(—lT + AE)] iE + E,.)/2] x C(t) expli(E, + E,)/2] dit
(23)
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