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Three-dimensional wave packet calculations for total angular momentum quantum numberJ g 0 have been
performed in Jacobi coordinates. To be able to use the split operator propagator together with the fast Fourier
transform method, the wave function is transformed and a modified Hamiltonian obtained. The filter
diagonalization method has been used to determine a few rovibrational eigenstates of the H2O molecule on
the lowest potential energy surface. Good agreement with previous work is obtained.

1. Introduction

The time-dependent Schro¨dinger equation (we use atomic
units throughout)

together with the initial condition

whereR describes all spatial coordinates, provides a physically
clear picture of a system’s evolution in time and allows us to
connect experimental properties, such as absorption1 and Ra-
man2,3 spectra, with details in the dynamical process. The time-
dependent approach is the natural choice when dealing with
time-dependent potentials, as in the case of interaction with a
laser field.

At present, several methods of propagating the solution to
the time-dependent Schro¨dinger equation, such as the split
operator method, the Lanczos algorithm, and the Chebyshev
polynomial expansion technique, are known.4,5 Different coor-
dinate systems, such as Cartesian, Jacobi, hyperspherical, etc.,6

are used, as there is no ideal coordinate system for every
molecule or task and the optimal system should be chosen for
the problem at hand.

In our previous work7,8 the split operator method has been
applied to study 3D quantum dynamics of nonlinear triatomic
molecules for total angular momentum quantum numberJ ) 0
using a modified version of Johnson’s hyperspherical coordinate
system. Advantages of the split operator method are its
simplicity and the possibility to use it with time-dependent
Hamiltonians. It exploits the speed of the fast Fourier transform
(FFT), scaling as favorably asN ln N with increasing grid size
N.

Unfortunately, the modified version of Johnson’s hyper-
spherical coordinates has singularities at certain T-shaped
configurations which may cause numerical problems for some
molecules. For example, the H2O ground-state wave function
is nonzero close to singular geometries. This slows down the

convergence of the calculations significantly. Therefore, other
curvilinear coordinate systems, such as Radau or Jacobi
coordinates, could be more efficient in this case.

To be able to use the split operator method together with
FFT in curvilinear coordinates, the Hamiltonian must obey
certain requirements.7 These are fulfilled for the modified
version of Johnson’s hyperspherical coordinates but do not hold
in general. Therefore, the question of the applicability of the
method to other curvilinear coordinate systems arises. In the
present study we show that for triatomic systems the split
operator method together with FFT can be applied using the
Jacobi coordinate system for problems with nonzero total
angular momentum if a transformation of the Hamiltonian is
made.

Inclusion of nonzero total angular momentum complicates
the calculations considerably. This inclusion may, however, be
necessary for accurate calculations, for example, when studying
photoexcitation where theJ ) 0 f J′ ) 0 transition usually is
not allowed.

2. Jacobi Coordinate System

The set of Jacobi coordinates for a triatomic molecule ABC
is given by three internal coordinatesR, r, θ, wherer is the
distance between B and C,R is the distance from the BC mass
center to the A atom, andθ is the angle betweenRandr. Three
Euler anglesR, â, γ describe rotations of the molecule. We
can write the wave function as a sum of products of internal
functions and angular momentum eigenfunctions9

whereDk
J are eigenfunctions of the total angular momentum

operatorĴ, and k is a quantum number corresponding to the
projection of the total angular momentum on thezaxis. Inserting
the wave function, eq 3, into the Schro¨dinger equation, eq 1,
multiplying by (Dk′

J)*, and integrating over the Euler angles,
one can verify that the original problem is reduced for every
value ofJ from a six-dimensional to a four-dimensional problem
in R, r, θ, k space.

† This paper was originally submitted for the Aron Kuppermann issue
of The Journal of Physical Chemistry A(March 22, 2001).
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An effective Hamiltonian operator for a system with itsz
axis parallel toR is given by9

whereµ is the reduced mass of the A-BC system andµ′ is the
reduced mass of the BC fragment.V(R, r, θ, t) is a potential
energy term that includes any external fields which may be time
dependent. The volume element for this Hamiltonian is given
by sin θdR dr dθ.

In order not to mix local and nonlocal operators of the same
coordinate (e.g., sinθ and∂/θ),7 a transformation of the wave
functionψJk ) φJk sin-1/2 θ is made. This allows the use of the
split operator propagator together with FFT. The new Hamil-
tonian is given by

with the volume element dR dr dθ.
The Hamiltonian can be simplified for the special caseJ )

k ) 0:

There are singularities atθ ) 0 and θ ) π. Therefore, one
must be careful when using this Hamiltonian for cases where
collinear geometries occur.

3. Propagation

Because of the nonlocal character of quantum mechanics, the
wave function is in principle required at every point in space.
In practice this is not required, as in most numerical imple-
mentations the wave packet is discretized and propagated on a
grid.

To evaluate the action of the time evolution operatorÛ
(the exponential of the Hamiltonian operator) onφJk, the split
operator method is used:7,10

whereT̂R is made up of terms containingR derivatives in eqs

6 and 7 and correspondingly forT̂r and T̂θ. The operatorÛ
collects all terms that do not contain any derivative.

For each kinetic energy operator,T̂R, T̂r, T̂θ, its derivatives
are found using one-dimensional FFT, keeping the other two
coordinates fixed.7 The operatorsT̂R and T̂r are diagonal, but
for J > 0 operatorsÛ andT̂θ are not diagonal ink. Different k
components of theÛ(R, r, θ, t) operator are coupled by the
Ĥk,k(1 terms of the Hamiltonian as seen in eq 7. Therefore, the
Û(R, r, θ, t) operator must be diagonalized at eachR, r, andθ
grid point.T̂θ is diagonalized in the Fourier space (see Appendix
A). The diagonalizations are performed before the propagation
in time begins. The results are stored, which does not require
much memory but reduces the computational effort.

All matrices to be diagonalized are tridiagonal of order
(2J + 1) × (2J + 1). For large values of the total angular
momentum, it may be worthwhile to separate the matrix into
two smaller matrices using initial wave functions of odd and
even parities.11 In this case the matrices will have orders
(J + 1) × (J + 1) andJ × J, depending on the parity.

An attractive feature of the split operator method is that it is
simple and it has been used successfully together with time-
dependent external fields. However, it should be pointed out
that in comparing it to the Chebyshev and Lanczos methods,4,5

the necessity to diagonalize a nondiagonal Hamiltonian matrix
is specific to the split operator method. This is due to the fact
that in the split operator method we evaluate the exponent of
the Hamiltonian matrix, whereas in the Chebyshev and Lanczos
methods the nondiagonal Hamiltonian matrix acts directly on a
wave function.

The split operator method has also been used by J. Z. H.
Zhang and co-workers forJ > 0 calculations, see for instance
ref 13. In their approach, the total wave function is expanded
in a basis of vibrational eigenfunctions for ther coordinate and
angular momentum eigenfunctions for angular coordinates. Due
to construction, this method13 should be effective when applied
to problems that can be well described by vibrational basis
functions for ther coordinate. Fourier functions, on the other
hand, are eigenfunctions of the kinetic energy operator and are
therefore expected to describe free particle motion and dis-
sociating coordinates well.

The operatorT̂θ is often handled by a Gauss-Legendre DVR.
In this case, theT̂θ operator becomes nondiagonal in the angle
θ through the DVR basis set, whereby it acquires an extra
dimension. Propagation thereby becomes very expensive, see
ref 12. The problem of diagonalization inθ does not arise using
FFT, asT̂θ remains diagonal in this coordinate in the Fourier
basis set.

4. Calculations of H2O Eigenstates

Time-dependent methods can be used to find eigenvalues and
eigenfunctions of the stationary Schro¨dinger equation.10 Since
eigenvalue problems of small polyatomic molecules are studied
by many researchers and many results are available, we have
chosen to test our propagation method by finding eigenvalues
for a previously well-studied system.

The procedure developed above is applied to the H2O
molecule in the ground state using an empirical PES constructed
by Jensen.14 Eigenstates forJ ) 0, 1, 2 are calculated using the
filter diagonalization method15 in order to separate closely lying
eigenstates. ForJ ) 2, each vibrational level has rotational states
with an energy separation∆E of only 1.1 cm-1. It can be
estimated from the time-energy uncertainty principle (more
precisely, from the Fourier integral theorem or the sampling
theorem)T g π/∆E,17 that using spectral methods the total
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propagation timeT must be larger than 15 ps. The filter
diagonalization method has been devised to overcome the
uncertainty principle15 and our hope was that it would allow us
to reduce this long propagation time.

To find eigenstates using the filter diagonalization (FD)
method a small set of basis functions is first obtained. This can
be done by propagating an arbitrary wave packet on the potential
energy surface.

Functions

whereg(t) is a filtering function, can be calculated at different
energiesEl and used as a basis set for the expansion of the trial
wave function. By construction, the functionsΦ(El) are
optimized to find eigenstates whose energies are close toEl.

In constructing the Hamiltonian,H, and overlap,S, matrices
over |Φ(El)), two time integrals result from eq 10. Using a
Gaussian damping function,15 a step function, or cosine based
functions16 in eq 10 allows the Hamiltonian and overlap matrices
to be constructed knowing only the correlation function:

where (Ψ(0)|Ψ(t)) ≡ 〈Ψ*(0)|Ψ(t)〉. This is made possible by
calculating one of the two time integrals in theH andSmatrices
analytically. We have tried all three damping functions men-
tioned above. The cosine-based and the Gaussian damping
functions give similar convergence of the results, the former
being slightly better, in agreement with ref 16. The cosine based
filtering function,16 which is used for the present work, is

whereT is the total propagation time andΘ(1 - t2/T2) is the
Heaviside step function. The Hamiltonian matrix elements and
the overlap matrix elements are given in Appendix B.

In order not to have to store the initial wave function, eq 11
can be rewritten as18

The Hamiltonian and overlap matrices give the generalized
eigenvalue equation

Solving eq 14, eigenvalues and eigenstates can be found in
selected energy ranges provided that these eigenstates are
contained in the wave packet.

In our calculations, we have used 32 grid points for every
coordinate and a time step∆t ) 0.05 fs. Separate calculations
for eachJ have been performed. An arbitrary, but smooth, initial
wave packet with no symmetry restrictions has been chosen in
order to obtain all relevant eigenstates from one run. The
rotational eigenenergies have been converged to 0.005 cm-1

accuracy. This corresponds to a relative error smaller than 10-6.
The required number of propagation steps to converge all
rotational eigenstates isN0 ) 1500, N1 ) 30 000, andN2 )
50 000 forJ ) 0, J ) 1, andJ ) 2, respectively.

In Tables 1-3, the eigenenergies obtained are compared with
eigenenergies found in the theoretical study by Fernley et al.19

using the variational method. Results from the recent study of
Acioli et al.20 using the correlation function quantum Monte
Carlo (CFQMC) method are also included. The same potential

used in those studies was used in the present study. As the H2O
molecule is an asymmetric rotor,k is not a good quantum
number and eigenenergies corresponding to some particular
value ofJ are numbered byτ rather than byk. Our calculated
zero point energy is 4630.4 cm-1. Acioli et al.20 found it to be
4628.2 cm-1.

From the tables, we see that the agreement with the results
of Fernley et al. is very good, whereas the agreement with the
results of Acioli et al. is poorer. There is, however, a discrepancy
of about 0.5 cm-1 between our energy values and those of
Fernley et al. for the (1,0,0) and (0,0,1)J ) 0 vibrational levels,
see Table 1. The origin of this disagreement is not clear.

To resolve theJ ) 2 rovibrational states, the required total
propagation time is 2.5 ps. Thus, there is some gain compared
to the 15 ps propagation time, which is dictated by the time-
energy uncertainty principle, though the improvement is not very

|Φ(El)) ) ∫-∞

∞
g(t) eiEltΨ(t) dt (10)
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2T)Θ(1 - t2/T2) (12)

C(t) ) (e-iĤt/2Ψ(0)| e-iĤt/2Ψ(0)) ) (Ψ(t/2))2 (13)

HB ) SBE (14)

TABLE 1: Calculated Vibrational Energies (J ) 0) of the
H2O Molecule in the Ground Electronic State (denoted FD)a

(ν1,ν2,ν3) FD DVR CFQMC

0 1 0 1594.3 1594.3 1594.4
0 2 0 3152.0 3152.0 3151.4
1 0 0 3657.1 3656.5 3657.8
0 0 1 3755.5 3756.0 3756.6

a Reference energies are taken from Fernley et al.19 (DVR) and Acioli
et al.20 (CFQMC). All energies are given in cm-1 relative to the (0, 0,
0) state.

TABLE 2: Calculated Rovibrational Energies (J ) 1) of the
H2O Molecule in the Ground Electronic State (denoted FD)a

(ν1,ν2,ν3) τ ) -1 τ ) 0 τ ) 1

0 0 0 FD 23.80 37.08 42.32
DVR 23.80 37.08 42.33
CFQMC 22.25 36.04 41.61

0 1 0 FD 23.82 40.17 45.72
DVR 23.82 40.18 45.72
CFQMC 22.78 41.24 44.86

0 2 0 FD 23.82 44.39 50.23
DVR 23.82 44.39 50.22
CFQMC 22.52 47.08 52.24

1 0 0 FD 23.43 36.24 41.45
DVR 23.43 36.24 41.45
CFQMC 23.42 35.97 42.05

0 0 1 FD 23.60 35.80 41.09
DVR 23.60 35.80 41.09
CFQMC 23.64 39.31 42.64

a Reference energies are taken from Fernley et al. (DVR)19 and Acioli
et al. (CFQMC).20 All energies are relative to theJ ) 0 state.

TABLE 3: Calculated Rovibrational Energies (J ) 2) of the
H2O Molecule in the Ground Electronic State (FD)a

(ν1,ν2,ν3) τ ) -2 τ ) -1 τ ) 0 τ ) 1 τ ) 2

0 0 0 FD 70.11 79.45 95.16 134.70 135.97
DVR 70.11 79.45 95.17 134.70 135.98
CFQMC 71.40 79.45 99.51 135.81 137.13

0 1 0 FD 70.23 82.27 98.88 147.38 148.57
DVR 70.23 82.27 98.88 147.39 148.57
CFQMC 74.12 84.48 104.36 150.52 151.57

0 2 0 FD 70.36 86.24 103.68 164.24 165.31
DVR 70.36 86.23 103.69 164.25 165.32
CFQMC 72.52 89.68 99.82 170.16 175.84

1 0 0 FD 68.97 77.89 93.50 131.63 132.92
DVR 68.97 77.89 93.50 131.63 132.92
CFQMC 72.25 79.74 102.96 130.94 134.28

0 0 1 FD 69.39 77.73 93.58 129.89 131.27
DVR 69.39 77.73 93.58 129.89 131.27
CFQMC 71.86 78.48 98.74 133.46 137.94

a Reference energies are taken from Fernley et al. (DVR)19 and Acioli
et al. (CFQMC).20 All energies are relative to theJ ) 0 state.
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large. The gain is even smaller for theJ ) 0 andJ ) 1 states.
One possible explanation for the slow convergence of the filter
diagonalization method that we find for this problem could be
the specific structure of the rovibrational spectrum, where
rotational energy levels are grouped in dense packs for each
vibrational level. We note that in a recent paper Vijay and Wyatt
find that the FD method does not always bypass the time-
energy uncertainty constraint,21 Certainly, one must conclude
that for the particular problem treated here, the use of basis set
methods or iterative approaches, for instance employing the
Lanczos algorithm, would be computationally less expensive
for finding the eigenvalues, see ref 22 for a discussion.

5. Concluding Remarks

A wave packet representing a rotating triatomic molecule is
propagated in Jacobi coordinates for total angular momentum
quantum numberJ equal to 0,1,2. The propagation is performed
using the split operator method combined with the fast Fourier
transform technique, which is made possible by a simple
transformation of the molecular Hamiltonian. We test this
propagation method by calculating rovibrational eigenstates of
the H2O molecule, which are found to be in good agreement
with those found by Fernley et al. using the discrete variable
representation approach.19

The nonzero total angular momentum calculations could be
of interest to photoexcitation processes. As a short-time
propagator is used in this work, the method can be applied to
studies of triatomic molecules interacting with femtosecond laser
fields. However, application of the method to transitions other
thanJ ) 0 f J′ ) 1 may be difficult, due to problems of finding
an initial wave function (differentJ andk states may contribute
to the initial wave function). Another problem for application
to transitions involving large values ofJ could be that the
computer memory required increases with the total angular
momentum. Therefore, some approximations, such as restriction
of the initial state to certainJ and k (or τ) values, may be
necessary in such a case.
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Appendix A

To illustrate the evaluation of the action of the exponential
of the kinetic energy operatorT̂θ onφJk, we consider the simple
caseJ ) 1/2. Thenk can take two values, which we denote by
subscripts and write

The following property is used

whereFT̂(pθ, θ)-1 is the inverse Fourier transform, which is
defined as

if the forward Fourier transform is defined as

The kinetic energy operatorT̂θ(pθ), defined by eqs 4 and 5, is
diagonalized in Fourier space

whereD̂θ is a diagonal matrix andU is unitary, whereby

can be used to propagate the wave packet. Generalization to
cases of larger values ofJ is straightforward.

Summarizing, the action ofT̂θ for J > 0 cases is evaluated
in three steps. First, the 1D Fourier transform of the wave
function is performed. Second, the exponential of the operator
T̂θ(pθ), eq 20, is applied. TheT̂θ operator can be split into a
commuting diagonal part and a noncommuting nondiagonal part.
The required diagonalization of the nondiagonal part is then
done at eachR andpθ. Third, the 1D inverse Fourier transform
of the wave function is found.

Appendix B

The overlap matrix elementsSll ′ for the cosine filtering
function are given by

where∆E ) (El - El′)/2. This expression is analogous to the
one derived by M. H. Beck et al. in ref 16, where details of the
derivation can be found.

To find the Hamiltonian matrix elementsHll ′, the following
relationship15 has been used:
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